Треугольник серпинского алгоритм построения. В мире фракталов: Фракталы в математике. И что с того

Треугольник серпинского алгоритм построения. В мире фракталов: Фракталы в математике. И что с того
Треугольник серпинского алгоритм построения. В мире фракталов: Фракталы в математике. И что с того
Треугольник Серпинского
Треугольник Серпинского - один из известнейших фракталов, его построение - одна из первых лабораторных работ на рекурсию по соответствующим дисциплинам во многих ВУЗах. Выглядит фрактал следующим образом:
Треугольник Паскаля
Треугольник Паскаля - бесконечная таблица биномиальных коэффициентов, имеющая треугольную форму. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Строки треугольника симметричны относительно вертикальной оси.

И что с того?

Есть в треугольнике Паскаля интересная особенность. Он отображает вышеупомянутый фрактал своими числами. Если долго всматриваться в бездну, бездна начинает всматриваться в тебя значения, то можно увидеть, что чётные и нечетные числа располагаются группами, ибо есть одно негласное всем известное правило: четное+нечетное=нечетное, четное+четное=четное, нечетное+нечетное=четное.

Что ж, меньше слов, больше дела. Сделаем вывод немного нагляднее. Людям, не интересующимся программной реализацией следующий абзац будет неинтересен.

Я взял старый алгоритм расчета-вывода треугольника Паскаля и преобразовал его таким образом, что вместо значения чисел выводится остаток от его деления на 2. Стало быть, четные теперь стали нулями, нечетные - единицами. Сам код прилагаю ниже
#include using namespace std; double Cnk(int N,int K) { return ((N(Cnk(j,i)))%2<<" "; cout<<"\n"; } return 0; }
Для пущей наглядности я разукрасил вывод следующим способом: вывод программы перенаправляется в файл, откуда по завершению выполнения первой, перл своими регэкспами заменяет единицы на красные буквы О, нули - на синие. Код скрипта ниже:
#! perl -w open (STREAM_IN, "1.txt");# || die "Can"t open STREAM_IN\n"; open (STREAM_OUT, ">> 1.html");# || die "Can"t open STREAM_OUT\n"; $ss="
"; while ($curr = ) { chomp($curr); $curr=~s/1/O<\/font>/g; $curr=~s/0/O<\/font>/g; $curr=~s/-//g; $out = $curr.$ss; print (STREAM_OUT $out); }; close STREAM_IN; close STREAM_OUT;
Из исходника видно, что смотреть мы будем html. Почему? Из соображений простоты. Только дерево DOM неверное получается. Исправим это скриптом на BASH и автоматизируем всё вышеописанное:
#!/bin/bash g++ ~/serp.cpp; ~/a.out > ~/1.txt; echo " TRIANGLE

" > ~/1.html; perl ~/s.pl; echo "
" >> ~/1.html
Итак, мы компилируем исходник на плюсах, его вывод уходит в текстовичок, баш «эхает» в html на перезапись началом дерева DOM, после чего текстовичок берет перл-скрипт, переделывает его в разноцветную html-версию, дополняет htmlку, после чего любезный БАШ снова завершает формирование дерева. Запускаем, смотрим:


Подчеркнем и сравним с оригиналом


PROFIT

В Викисловаре есть статья «треугольник» Треугольник в широком смысле объект треугольной формы, либо тройка объектов, попарно связ … Википедия

Построение треугольника Рёло Треугольник Рёло[* 1] предста … Википедия

Треугольник Серпинского Треугольник Серпинского фрактал, один из двумерных аналогов множества Кантора предложенный польским математиком Серпинским в 1915 году. Также известен как «решётка» или «салфетка» Серпинского. Построение Берётся сплошной… … Википедия

Ковёр (квадрат) Серпинского Ковёр Серпинского (квадрат Серпинского) фрактал, один из двумерных аналогов множества Кантора, предложенный польским математиком Вац … Википедия

Коврик Серпинского Ковёр Серпинского фрактал, один из двумерных аналогов множества Кантора предложенный польским математиком Вацлавом Серпинским. Также известен как квадрат Серпинского. Содержание 1 Построение … Википедия

Ковёр Серпинского фрактал, один из двумерных аналогов множества Кантора предложенный польским математиком Вацлавом Серпинским. Также известен как квадрат Серпинского. Содержание 1 Построение … Википедия

Треугольник Серпинского изображение, задаваемое тремя аффинными преобразованиями Фрактальное сжатие изображений это алгоритм сжатия изображений c потерями, основанный на применении систем итерируемых функций (IFS, как правило являющимися… … Википедия

Треугольник Серпинского изображение, задаваемое тремя аффинными преобразованиями Фрактальное сжатие изображений алгоритм сжатия изображений c … Википедия

Множество Мандельброта классический образец фрактала … Википедия

Множество Мандельброта классический образец фрактала Фрактал (лат. fractus дробленый) термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре… … Википедия

Книги

  • Математика - это красиво! , Анна Вельтман. О чем эта книга Эта необычная тетрадь покажет вам, что математика может быть красивой, а гармония в изобразительном искусстве основана на числах. На страницах этойграфической тетради, с…
  • Сложение однобитных чисел. Треугольник Паскаля, салфетка Серпинского и теорема Куммера , С. Б. Гашков. В книге рассказывается о любопытной связи задачи о сложении чисел в двоичной записи с алгеброй логики, многочленами Жегалкина, треугольником Паскаля, салфеткой Серпинского и теоремой Куммера…

Треугольник Серпинского - фрактал , один из двумерных аналогов множества Кантора , предложенный польским математиком Вацлавом Серпинским в 1915 году . Также известен как «салфетка» Серпинского.

Треугольник Серпинского

Построение

Итеративный метод

Построение треугольника Серпинского

Середины сторон равностороннего треугольника соединяются отрезками. Получаются 4 новых треугольника. Из исходного треугольника удаляется внутренность срединного треугольника . Получается множество T 1 {\displaystyle T_{1}} , состоящее из 3 оставшихся треугольников «первого ранга». Поступая точно так же с каждым из треугольников первого ранга, получим множество T 2 {\displaystyle T_{2}} , состоящее из 9 равносторонних треугольников второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность T 0 ⊃ T 1 ⊃ ⋯ ⊃ T n ⊃ … {\displaystyle T_{0}\supset T_{1}\supset \dots \supset T_{n}\supset \dots } , пересечение членов которой есть треугольник Серпинского.

Метод хаоса

1. Задаются координаты аттракторов - вершин исходного треугольника T 0 {\displaystyle T_{0}} . 2. Вероятностное пространство (0 ; 1) {\displaystyle (0;1)} разбивается на 3 равных части, каждая из которых соответствует одному аттрактору. 3. Задаётся некоторая начальная точка P 0 {\displaystyle P_{0}} , лежащая внутри треугольника T 0 {\displaystyle T_{0}} . 4. Начало цикла построения точек, принадлежащих множеству треугольника Серпинского. 1. Генерируется случайное число n ∈ (0 ; 1) {\displaystyle n\in (0;1)} . 2. Активным аттрактором становится та вершина, на вероятностное подпространство которой выпало сгенерированное число. 3. Строится точка P i {\displaystyle P_{i}} с новыми координатами: x i = x i − 1 + x A 2 ; y i = y i − 1 + y A 2 {\displaystyle x_{i}={\frac {x_{i-1}+x_{A}}{2}};y_{i}={\frac {y_{i-1}+y_{A}}{2}}} , где: x i − 1 , y i − 1 {\displaystyle x_{i-1},y_{i-1}} - координаты предыдущей точки P i − 1 {\displaystyle P_{i-1}} ; x A , y A {\displaystyle x_{A},y_{A}} - координаты активной точки-аттрактора. 5. Возврат к началу цикла.

Свойства

Построение итеративным методом

Построение методом хаоса

Примечания

Ссылки

L-система

L-система или система Линденмайера - это параллельная система переписывания и вид формальной грамматики. L-система состоит из алфавита символов, которые могут быть использованы для создания строк, набора порождающих правил, которые задают правила подстановки вместо каждого символа, начальной строки («аксиомы»), с которой начинается построение, и механизма перевода образованной строки в геометрические структуры. L-системы предложил и развивал в 1968 Аристид Линденмайер, венгерский биолог и ботаник из Утрехтского университета. Линденмайер использовал L-системы для описания поведения клеток растений и моделирования процесса развития растения. L-системы использовались также для моделирования морфологии различных организмов и могут быть использованы для генерации самоподобных фракталов, таких как системы итерируемых функций.

Racket (язык программирования)

Racket (ранее - PLTScheme) - мультипарадигменный язык программирования общего назначения, принадлежащий семейству Lisp/Scheme. Предоставляет среду языково-ориентированное программирование - одно из предназначений racket - создание, разработка и реализация языков программирования. Язык используется в различных контекстах: как скриптовый язык, как язык общего назначения, в обучении информатике, в научных исследованиях.

Платформа предоставляет пользователю реализацию языка Racket, включая развитую среду выполнения (англ. run time system), различные библиотеки, JIT-компилятор и т. д., а также среду разработки DrRacket (ранее известную, как DrScheme) написанную на Racket. Эта программная среда используется в учебном курсе ProgramByDesign массачусетского технологического института. Основной язык Racket отличает мощная макросистема, позволяющая создавать встраиваемые и предметно-ориентированные языки программирования, языковые конструкции (к примеру, классы и модули) и диалекты Racket с различной семантикой.

Система является свободным и открытым ПО, распространяемым на условиях LGPL. Расширения и пакеты, написанные сообществом, доступны на PLaneT, веб-дистрибутиве системы.

Алгоритм фрактального сжатия

Фрактальное сжатие изображений - алгоритм сжатия изображений c потерями, основанный на применении систем итерируемых функций (как правило являющимися аффинными преобразованиями) к изображениям. Данный алгоритм известен тем, что в некоторых случаях позволяет получить очень высокие коэффициенты сжатия при приемлемом визуальном качестве для реальных фотографий природных объектов. Из-за сложной ситуации с патентованием широкого распространения алгоритм не получил.

Делящаяся плитка

Делящаяся плитка (англ. rep-tile) - понятие геометрии мозаик, фигура, которую можно разрезать на меньшие копии самой фигуры. В 2012 обобщение делящихся мозаик с названием self-tiling tile set (набор плиток с самозамощением) было предложено английским математиком Ли Сэлоусом в журнале Mathematics Magazine .

Конечное правило подразделения

В математике конечное правило подразделения - это рекурсивный способ деления многоугольника и других двумерных фигур на всё меньшие и меньшие части. Правила подразделения в этом смысле является обобщением фракталов. Вместо повторения одного и того же узора снова и снова здесь имеются небольшие изменения на каждом шаге, что позволяет получить более богатые структуры, сохраняя при этом поддержку элегантного стиля фракталов. Правила подразделения используются в архитектуре, биологии и информатике, а также при изучении гиперболических многообразий. Подстановки плиток являются хорошо изученным видом правил подразделения.

Кривая Пеано

Крива́я Пеа́но - общее название для параметрических кривых, образ которых содержит квадрат (или, в более общем смысле, открытые области пространства). Другое название - заполняющая пространство кривая.

Названа в честь Джузеппе Пеано (1858-1932), первооткрывателя такого рода кривых, в частном смысле кривой Пеано называется конкретная кривая, которую нашёл Пеано.

Кривая Серпинского

Кривые Серпинского - это рекурсивно определённая последовательность непрерывных замкнутых плоских фрактальных кривых, открытых Вацлавом Серпинским. Кривая в пределе при полностью заполняет единичный квадрат, так что предельная кривая, также называемая кривой Серпинского , является примером заполняющих пространство кривых.

Поскольку кривая Серпинского заполняет пространство, её размерность Хаусдорфа (в пределе при n → ∞ {\displaystyle n\rightarrow \infty } ) равна 2 {\displaystyle 2} .
Евклидова длина кривой

равна l n = 2 3 (1 + 2) 2 n − 1 3 (2 − 2) 1 2 n {\displaystyle l_{n}={2 \over 3}(1+{\sqrt {2}})2^{n}-{1 \over 3}(2-{\sqrt {2}}){1 \over 2^{n}}} ,

т. е. она растёт экпоненциально по n {\displaystyle n} , а предел при n → ∞ {\displaystyle n\rightarrow \infty } площади области, заключённой кривой S n {\displaystyle S_{n}} , составляет 5 / 12 {\displaystyle 5/12} квадрата (в Евклидовой метрике).

Логарифм

Логари́фм числа b {\displaystyle b} по основанию a {\displaystyle a} (от др.-греч. λόγος «слово; отношение» + ἀριθμός «число») определяется как показатель степени, в которую надо возвести основание a {\displaystyle a} , чтобы получить число b {\displaystyle b} . Обозначение: log a ⁡ b {\displaystyle \log _{a}b} , произносится: «логарифм b {\displaystyle b} по основанию a {\displaystyle a} ».

Из определения следует, что нахождение x = log a ⁡ b {\displaystyle x=\log _{a}b} равносильно решению уравнения a x = b {\displaystyle a^{x}=b} . Например, log 2 ⁡ 8 = 3 {\displaystyle \log _{2}8=3} , потому что 2 3 = 8 {\displaystyle 2^{3}=8} .

Вычисление логарифма называется логарифми́рованием . Числа a , b {\displaystyle a,b} чаще всего вещественные, но существует также теория комплексных логарифмов .

Логарифмы обладают уникальными свойствами, которые определили их широкое использование для существенного упрощения трудоёмких вычислений. При переходе «в мир логарифмов» умножение заменяется на значительно более простое сложение, деление - на вычитание, а возведение в степень и извлечение корня преобразуются соответственно в умножение и деление на показатель степени. Лаплас говорил, что изобретение логарифмов, «сократив труд астронома, удвоило его жизнь».

Определение логарифмов и таблицу их значений (для тригонометрических функций) впервые опубликовал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, расширенные и уточнённые другими математиками, повсеместно использовались для научных и инженерных расчётов более трёх веков, пока не появились электронные калькуляторы и компьютеры.

Со временем выяснилось, что логарифмическая функция y = log a ⁡ x {\displaystyle y=\log _{a}x} незаменима и во многих других областях человеческой деятельности: решение дифференциальных уравнений, классификация значений величин (например, частота и интенсивность звука), аппроксимация различных зависимостей, теория информации, теория вероятностей и т. д. Эта функция относится к числу элементарных, она обратна по отношению к показательной функции. Чаще всего используются вещественные логарифмы с основаниями 2 {\displaystyle 2} (двоичный), e {\displaystyle e} (натуральный логарифм) и 10 {\displaystyle 10} (десятичный).

Нанотехнологии на основе ДНК

Нанотехнологии на основе ДНК (англ. DNA nanotechnology) - разработка и производство искусственных структур из нуклеиновых кислот для технологического использования. В этой научной области нуклеиновые кислоты используются не как носители генетической информации в живых клетках, а в качестве материала для нужд небиологической инженерии наноматериалов.

В технологии используются строгие правила спаривания оснований нуклеиновых кислот, которые для формирования прочной жесткой структуры двойной спирали допускают только связывание вместе частей нитей с комплементарными последовательностями оснований. Исходя из этих правил, появляется возможность инженерного проектирования последовательности оснований, которая будет выборочной сборкой образовывать сложные целевые структуры с точно настроенными наноразмерными формами и свойствами. В основном, для создания материалов используется ДНК, однако были построены и структуры с включением других нуклеиновых кислот, таких как РНК и пептидо-нуклеиновые кислоты (ПНК), позволяя использовать для описания поля технологий название «нанотехнологии на основе нуклеотидных оснований» .

Основная концепция нанотехнологий на основе ДНК была впервые предложена в начале 1980-х годов Надрианом Симэном, и в середине 2000-х годов это поле для исследований начало привлекать широкий интерес. Исследователи, работающие в новой появляющейся области технологий, создали статические структуры, такие как двух- и трёхмерные кристаллические решётки, нанотрубки, многогранники и другие произвольные формы, а также - функциональные структуры, такие как молекулярные машины и ДНК-компьютеры.

Для сборки этих структур используется множество методов, включая плиточное структурирование, где плитки собираются из более мелких структур, складывающиеся структуры, создаваемые с помощью метода ДНК-оригами, и динамически перестраиваемые структуры, создаваемые с использованием методов перемещения пряди. Исследовательское поле начинает использоваться в качестве инструмента для решения проблем фундаментальной науки в областях структурной биологии и биофизики, включая прикладные задачи кристаллографии и спектроскопии для определения структуры белка. Также ведутся изыскания для потенциального применения в масштабируемой молекулярной электронике и наномедицине.

Натуральный логарифм

Натуральный логарифм - это логарифм по основанию e , где e {\displaystyle e} - иррациональная константа, равная приблизительно 2,72. Он обозначается как ln ⁡ x {\displaystyle \ln x} , log e ⁡ x {\displaystyle \log _{e}x} или иногда просто log ⁡ x {\displaystyle \log x} , если основание e {\displaystyle e} подразумевается. Обычно число x {\displaystyle x} под знаком логарифма вещественное, но можно расширить это понятие и на комплексные числа.

Из определения следует, что логарифмическая зависимость есть обратная функция для экспоненты y = e x {\displaystyle y=e^{x}} , поэтому их графики симметричны относительно биссектрисы первого и третьего квадрантов (см. рисунок справа). Как и экспонента, логарифмическая функция относится к категории трансцендентных функций.

Натуральные логарифмы полезны для решения алгебраических уравнений, в которых неизвестная присутствует в качестве показателя степени, они незаменимы в математическом анализе. Например, логарифмы используются для нахождения постоянной распада для известного периода полураспада или для нахождения времени распада в решении проблем радиоактивности. Они играют важную роль во многих областях математики и прикладных наук, применяются в сфере финансов для решения многих задач, включая нахождение сложных процентов.

Размерность Лебега

Размерность Лебега или топологическая размерность - размерность, определённая посредством покрытий, важнейший инвариант топологического пространства. Размерность Лебега пространства X {\displaystyle X} обычно обозначается dim ⁡ X {\displaystyle \dim X} .

Рекурсия

Реку́рсия - определение, описание, изображение какого-либо объекта или процесса внутри самого этого объекта или процесса, то есть ситуация, когда объект является частью самого себя. Термин «рекурсия» используется в различных специальных областях знаний - от лингвистики до логики, но наиболее широкое применение находит в математике и информатике.

Серпинский, Вацлав

Ва́цлав Франци́ск Серпи́нский, в другой транскрипции - Серпиньский (польск. Wacław Franciszek Sierpiński; 14 марта 1882, Варшава - 21 октября 1969, там же) - польский математик и педагог, известен трудами по теории множеств, аксиоме выбора, континуум-гипотезе, теории чисел, теории функций, а также топологии. Автор 724 статей и 50 книг.

Тетраэдр (Ботроп)

Тетраэдр (нем. Tetraeder) - стальная конструкция в виде тетраэдра с длиной ребра 60 м, опирающаяся на четыре 9-метровых бетонных опоры, используемая в качестве смотровой площадки, в городе Ботроп (федеральная земля Северный Рейн - Вестфалия). Тетраэдр расположен на вершине террикона Бекштрассе (нем. Beckstraße) шахты Проспер-Ганиэль (de: Bergwerk Prosper-Haniel) на высоте 105 м над уровнем моря. С верхней смотровой площадки открываются виды городов Боттроп, Эссен, Оберхаузен, Гладбек. При хорошей видимости дальность обзора достигает 40 км и позволяет различить даже телевизионную башню Rheinturm в Дюссельдорфе.

Ботропский Тетраэдр является тематическим пунктом регионального проекта «Путь индустриальной культуры» Рурского региона.

Треугольник Паскаля

Треугольник Паскаля - бесконечная таблица биномиальных коэффициентов, имеющая треугольную форму. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Строки треугольника симметричны относительно вертикальной оси. Назван в честь Блеза Паскаля. Числа, составляющие треугольник Паскаля, возникают естественным образом в алгебре, комбинаторике, теории вероятностей, математическом анализе, теории чисел.

Фрактал

Фракта́л (лат. fractus - дроблёный, сломанный, разбитый) - множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев. Самоподобные фигуры, повторяющиеся конечное число раз, называются предфракталами.

Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке в результате изучения непрерывных недифференцируемых функций (например, функция Больцано, функция Вейерштрасса, множество Кантора). Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». Особую популярность фракталы обрели с развитием компьютерных технологий, позволивших эффектно визуализировать эти структуры.

Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств:

Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур (таких как окружность, эллипс, график гладкой функции): если рассмотреть небольшой фрагмент регулярной фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, то есть на всех шкалах можно увидеть одинаково сложную картину.

Является самоподобным или приближённо самоподобным.

Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.Многие объекты в природе обладают свойствами фрактала, например: побережья, облака, кроны деревьев, снежинки, система кровообращения, альвеолы.

Фрактальная размерность

Фракта́льная разме́рность (англ. fractal dimension ) - один из способов определения размерности множества в метрическом пространстве. Фрактальную размерность n -мерного множества можно определить с помощью формулы:

D = − lim ε → 0 ln ⁡ (N ε) ln ⁡ (ε) {\displaystyle D=-\lim \limits _{\varepsilon \to 0}{\frac {\ln(N_{\varepsilon })}{\ln(\varepsilon)}}} , где N ε {\displaystyle N_{\varepsilon }} - минимальное число n -мерных «шаров» радиуса ε {\displaystyle \varepsilon } , необходимых для покрытия множества.

Фрактальная размерность может принимать не целое числовое значение.

Основная идея «дробной» (англ. fractured ) размерности имеет долгую историю в области математики, но именно сам термин введён в оборот Бенуа Мандельбротом в 1967 году в его статье о самоподобии, в которой он описал «дробную» (англ. fractional ) размерность. В этой статье Мандельброт ссылался на предыдущую работу Льюиса Фрайя Ричардсона, описывающую противоречащую здравому смыслу идею о том, что измеренная длина береговой линии зависит от длины мерной палки (шеста) (см. Рис. 1). Следуя этому представлению, фрактальная размерность береговой линии соответствует отношению числа шестов (в определенном масштабе), нужных для измерения длины береговой линии, к выбранному масштабу шеста. Есть несколько формальных математических определений [⇨] фрактальной размерности, которые строятся на этой базовой концепции, об изменении в элементе с изменением в масштабе.

Одним из элементарных примеров является фрактальная размерность снежинки Коха. Её топологическая размерность равна 1, но это ни в коем случае не спрямляемая кривая, поскольку длина кривой между любыми двумя точками снежинки Коха - бесконечность. Никакая сколько угодно малая часть кривой не является отрезком прямой. Скорее, снежинка Коха состоит из бесконечного числа сегментов, соединённых под разными углами. Фрактальную размерность кривой можно объяснить интуитивно, предполагая, что фрактальная линия - это объект слишком детальный (подробный), чтобы быть одномерным, но недостаточно сложный, чтобы быть двумерным. Поэтому её размерность лучше описывать не обычной топологической размерностью 1, но её фрактальной размерностью, равной в этом случае числу, лежащему в интервале между 1 и 2.

Фрактальное искусство

Фрактальное искусство - форма алгоритмического искусства, созданная путем вычисления фрактальных объектов и представляющая результаты вычислений как неподвижные изображения, анимацию и автоматически создаваемые медиафайлы. Фрактальное искусство зародилось в середине 1980-х годов. Это жанр компьютерного искусства и цифрового искусства, которые являются частью нового медиа-искусства. Вместе с тем фрактальное искусство являться одним из направлений так называемого «научного искусства».

Фрактальное искусство редко создается вручную. Обычно оно создается косвенно при помощи программного обеспечения, генерирующего фракталы через три этапа: установка параметров соответствующего программного обеспечения фрактала; выполнение возможно длительных вычислений; и оценки продукта. В некоторых случаях другие графические программы используются для последующей обработки созданных изображений. Нефрактальные изображения также могут быть включены в произведение искусства. Множество Жюлиа и Множество Мандельброта рассматриваются как иконы фрактального искусства.

Характеристики
Простейшие фракталы
  1. Берем обычный треугольник.
  2. Вырезаем из него треугольник, вершины которого лежат на серединах сторон исходного. В результате на плоскости получаем три треугольника, площадь каждого из которых в четыре раза меньше площади исходного.
  3. С полученными треугольниками проделываем предыдущие манипуляции.

Выглядит процесс так:

  1. Интересно, что если в треугольнике Паскаля все нечетные числа окрасить в один цвет, а четные в другой, то образуется треугольник Серпинского.
Этим фактом и воспользуемся. Только в Excel удобней использовать не классический (построчный) вид треугольника Паскаля, а такой:

Здесь биномиальные коэффициенты выписаны по диагонали, в первой заполненной строке и первом заполненном столбце единицы, а в остальных сумма вехнего и левого элемента.

Перейдем к построению. Для нас достаточно выписывать не коэффициенты, а только их четность.

Для начала сделаем размер ячеек в Excel, к примеру 7 на 7 пикселей.

Станем в ячейку B2 , затем выделим область B2:DY129 - для этого нажимаем Ctrl + G и в поле ссылка пишем B2:DY129 .

Теперь в строке формул пишем =ЕСЛИ(ИЛИ(СТРОКА()=2;СТОЛБЕЦ()=2);1;ОСТАТ(A2+B1;2))
и нажимаем Ctrl + Enter, чтобы заполнить подобной формулой всю выделенную область.

Заходим Меню - Условное форматирование и для значения 1 указываем цвет ячейки.

В итоге получаем:


Следует отметить, что треугольник Серпинского получается при некоторой разновидности случайного блуждания на плоскости. А именно:
  1. Зафиксируем на плоскости 3 вершины треугольника и возьмем еще одну точку.
  2. Первую точку получим как середину отрезка между случайно выбранной вершиной и точкой из п.1.
  3. Вторую точку получим как середину отрезка между случайно выбранной вершиной и первой точкой.
  4. Повторяем процесс много раз.

Можно ипользовать такой макрос:

Public Sub Макрос()

Dim arRange(1 To 3) As Range
Dim tekRow As Integer
Dim tekColumn As Integer
Dim i As Integer
Dim iT As Integer

tekRow = Int(1000 * Rnd) + 1
tekColumn = Int(200 * Rnd) + 1

Set arRange(1) = Cells(1, 1)
Set arRange(2) = Cells(50, 250)
Set arRange(3) = Cells(200, 20)

Cells.Clear

For i = 1 To 20000
iT = (Int(1000 * Rnd) Mod 3) + 1
tekRow = Int((tekRow + arRange(iT).Row) / 2)
tekColumn = Int((tekColumn + arRange(iT).Column) / 2)
Cells(tekRow, tekColumn).Interior.ColorIndex = 5
Next

End Sub

Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово фрактал образовано от латинского fractus и в переводе означает состоящий из фрагментов. Оно было предложено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта `The Fractal Geometry of Nature ". В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф ). Но только в наше время удалось объединить их работы в единую систему.
Роль фракталов в машинной графике сегодня достаточно велика. Они приходят на помощь, например, когда требуется, с помощью нескольких коэффициентов, задать линии и поверхности очень сложной формы. С точки зрения машинной графики, фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически найден способ легкого представления сложных неевклидовых объектов, образы которых весьма похожи на природные.
Одним из основных свойств фр акталов является самоподобие . В самом простом случае небольшая часть фрактала содержит информацию о всем фрактале. Определение фрактала, данное Мандельбротом, звучит так: "Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому".

Существует большое число математических объектов называемых фракталами (треугольник Серпинского , снежинка Коха, кривая Пеано, множество Мандельброта и лоренцевы аттракторы). Фракталы с большой точностью описывают многие физические явления и образования реального мира: горы, облака, турбулентные (вихревые) течения, корни, ветви и листья деревьев, кровеносные сосуды, что далеко не соответствует простым геометрическим фигурам. Впервые о фрактальной природе нашего мира заговорил Бенуа Мандельброт в своей основополагающей работе "Фрактальная геометрия природы" .
Термин фрактал введен Бенуа Мандельбротом в 1977 году в его фундаментальной работе "Фракталы, Форма, Хаос и Размерность" . Согласно Мандельброту, слово фрактал происходит от латинских слов fractus - дробный и frangere - ломать, что отражает суть фрактала, как "изломанного", нерегулярного множества.

Классификация фракталов.

Для того, чтобы представить все многообразие фракталов удобно прибегнуть к их общепринятой классификации. Существует три класса фракталов.

1. Геометрические фракталы.

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью ломаной (или поверхности в трехмерном случае), называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную , заменяется на ломаную-генератор в соответствующем масштабе. В результате бесконечного повторения этой процедуры получается геометрический фрактал.

Рассмотрим на примере один из таких фрактальных объектов – триадную кривую Коха.

Построение триадной кривой Коха.

Возьмем прямолинейный отрезок длины 1. Назовем его затравкой . Разобьем затравку на три равные части длиной в 1/3, отбросим среднюю часть и заменим ее ломаной из двух звеньев длиной 1/3.

Мы получим ломаную , состоящую из 4 звеньев с общей длиной 4/3 , - так называем первое поколение .

Для того чтобы перейти к следующему поколению кривой Коха, надо у каждого звена отбросить и заменить среднюю часть. Соответственно длина второго поколения будет 16/9, третьего – 64/27. если продолжить этот процесс до бесконечности, то в результате получится триадная кривая Коха.

Рассмотрим теперь св-ва триадной кривой Коха и выясним, почему же фракталы называли «монстрами».

Во-первых, эта кривая не имеет длины – как мы убедились, с числом поколений ее длина стремится к бесконечности.

Во-вторых, к этой кривой невозможно построить касательную – каждая ее точка является точкой перегиба, в которой производная не существует, - эта кривая не гладкая.

Длина и гладкость – фундаментальные св-ва кривых, которые изучаются как евклидовой геометрией, так и геометрией Лобачевского, Римана. К триадной кривой Коха традиционные методы геометрического анализа оказались неприменимы, поэтому кривая Коха оказалась чудовищем – «монстром» среди гладких обитателей традиционных геометрий.

Построение "дракона" Хартера-Хейтуэя .

Для получения другого фрактального объекта нужно изменить правила построения. Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. На рисунке представлены несколько первых поколений и 11-е поколение кривой, построенной по вышеописанному принципу. Кривая, при n стремящемуся к бесконечности, называется драконом Хартера-Хейтуэя .
В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности объекта).

2.Алгебраические фракталы

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n-мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоваться терминологией теории этих систем: фазовый портрет, установившийся процесс, аттрактор и т.д.
Известно, что нелинейные динамические системы обладают несколькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.


Множество Мандельброта.

В качестве примера рассмотрим множество Мандельброта. Алгоритм его построения достаточно прост и основан на простом итеративном выражении: Z = Z * Z + C , где Zi и C - комплексные переменные. Итерации выполняются для каждой стартовой точки с прямоугольной или квадратной области - подмножестве комплексной плоскости. Итерационный процесс продолжается до тех пор, пока Z не выйдет за пределы окружности радиуса 2, центр которой лежит в точке (0,0), (это означает, что аттрактор динамической системы находится в бесконечности), или после достаточно большого числа итераций (например 200-500) Z сойдется к какой-нибудь точке окружности. В зависимости от количества итераций, в течении которых Z оставалась внутри окружности, можно установить цвет точки C (если Z остается внутри окружности в течение достаточно большого количества итераций, итерационный процесс прекращается и эта точка растра окрашивается в черный цвет).

3.Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе хаотически менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря .
Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).

О применении фракталов

Прежде всего, фракталы - область удивительного математического искусства, когда с помощью простейших формул и алгоритмов получаются картины необычайной красоты и сложности! В контурах построенных изображений нередко угадываются листья, деревья и цветы.

Одни из наиболее мощных приложений фракталов лежат в компьютерной графике. Во-первых, это фрактальное сжатие изображений, и во-вторых построение ландшафтов, деревьев, растений и генерирование фрактальных текстур. Современная физика и механика только-только начинают изучать поведение фрактальных объектов. И, конечно же, фракталы применяются непосредственно в самой математике.
Достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Фрактально упакованные картинки можно масштабировать без появления пикселизации . Но процесс сжатия занимает продолжительное время и иногда длится часами. Алгоритм фрактальной упаковки с потерей качества позволяет задать степень сжатия, аналогично формату jpeg . В основе алгоритма лежит поиск больших кусков изображения подобных некоторым маленьким кусочкам. И в выходной файл записывается только какой кусочек какому подобен. При сжатии обычно используют квадратную сетку (кусочки - квадраты), что приводит к небольшой угловатости при восстановлении картинки, шестиугольная сетка лишена такого недостатка.
Компанией Iterated разработан новый формат изображений "Sting ", сочетающий в себе фрактальное и «волновое» (такое как в формате jpeg ) сжатие без потерь. Новый формат позволяет создавать изображения с возможностью последующего высококачественного масштабирования, причем объем графических файлов составляет 15-20% от объема несжатых изображений.
Склонность фракталов походить на горы, цветы и деревья эксплуатируется некоторыми графическими редакторами, например фрактальные облака из 3D studio MAX, фрактальные горы в World Builder . Фрактальные деревья, горы и целые пейзажи задаются простыми формулами, легко программируются и не распадаются на отдельные треугольники и кубики при приближении.
Нельзя обойти стороной и применения фракталов в самой математике. В теории множеств множество Кантора доказывает существование совершенных нигде не плотных множеств, в теории меры самоаффинная функция "Канторова лестница" является хорошим примером функции распределения сингулярной меры.
В механике и физике фракталы используются благодаря уникальному свойству повторять очертания многих объектов природы. Фракталы позволяют приближать деревья, горные поверхности и трещины с более высокой точностью, чем приближения наборами отрезков или многоугольников (при том же объеме хранимых данных). Фрактальные модели, как и природные объекты, обладают "шероховатостью", и свойство это сохраняется при сколь угодно большом увеличении модели. Наличие на фракталах равномерной меры, позволяет применять интегрирование, теорию потенциала, использовать их вместо стандартных объектов в уже исследованных уравнениях.
При фрактальном подходе хаос перестает быть синимом беспорядка и обретает тонкую структуру. Фрактальная наука еще очень молода, и ей предстоит большое будущее. Красота фракталов далеко не исчерпана и еще подарит нам немало шедевров - тех, которые услаждают глаз, и тех, которые доставляют истинное наслаждение разуму.

О построении фракталов

Метод последовательных приближений

Глядя на эту картинку, нетрудно понять, как можно построить самоподобный фрактал (в данном случае пирамиду Серпинского ). Нужно взять обычную пирамиду (тетраэдр), затем вырезать ее середину (октаэдр), в результате чего у нас получается четыре маленьких пирамидки. С каждой из них мы проделываем ту же самую операцию и т.д. Это несколько наивное, но наглядное объяснение.

Рассмотрим суть метода более строго. Пусть имеется некоторая IFS-система, т.е. система сжимающих отображений S ={S 1 ,...,S m } S i:R n ->R n (например, для нашей пирамидки отображения имеют вид S i (x )=1/2*x+o i , где o i - вершины тетраэдра, i=1,..,4). Затем выбираем некоторое компактное множество A 1 в R n (в нашем случае выбираем тетраэдр). И определяем по индукции последовательность множеств A k:A k+1 =S 1 (A k ) U...U S m (A k ). Известно, что множества A k с ростом k , всё лучше приближают искомый аттрактор системы S .

Заметим, что каждая из этих итераций является аттрактором рекуррентной системы итерированных функций (английский термин Digraph IFS , RIFS и также Graph-directed IFS ) и поэтому их легко построить с помощью нашей программы.

Построение по точкам или вероятностный метод

Это наиболее лёгкий для реализации на компьютере метод. Для простоты рассмотрим случай плоского самоаффинного множества. Итак, пусть {S 1 ,..,S m } - некоторая система аффинных сжатий. Отображения S i представимые в виде: S i (x )=A i (x-o i )+o i , где A i - фиксированная матрица размера 2x2 и o i - двумерный вектор столбец.

· Возьмем неподвижную точку первого отображения S 1 в качестве начальной точки:
x : = o1;
Здесь мы пользуемся тем, что все неподвижные точки сжатий S 1 ,..,S m принадлежат фракталу. В качестве начальной точки можно выбрать произвольную точку и порожденная ею последовательность точек стянется к фракталу, но тогда на экране появятся несколько лишних точек.

· Отметим текущую точку x= (x 1 ,x 2) на экране:
putpixel (x 1 ,x 2 ,15);

· Выберем случайным образом число j от 1 до m и пересчитаем координаты точки x :
j:=Random (m )+1;
x:=S j (x );

· Переходим на шаг 2, либо, если сделали достаточно большое число итераций, то останавливаемся.
Примечание. Если коэффициенты сжатия отображений S i разные, то фрактал будет заполняться точками неравномерно. В случае, если отображения S i являются подобиями, этого можно избежать небольшим усложнением алгоритма. Для этого на 3-ем шаге алгоритма число j от 1 до m надо выбирать с вероятностями p 1 =r 1 s ,..,p m =r m s , где r i обозначают коэффициенты сжатия отображений S i , а число s (называемое размерностью подобия) находится из уравнения r 1 s +...+r m s =1. Решение этого уравнения можно найти, например, методом Ньютона.

О фракталах и их алгоритмах

Фрактал происходит от латинского прилагательного "fractus ", и в переводе означает состоящий из фрагментов, а соответствующий латинский глагол "frangere " означает разбивать, то есть создавать неправильные фрагменты. Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Термин был предложен Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта «The Fractal Geometry of Nature » - «Фрактальная геометрия природы». В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф ).

Коррективы

Позволю себе внести некоторые коррективы в алгоритмы предложенные в книге Х.-О. Пайтгена и П.Х.Рихтера "Красота фракталов" М. 1993 сугубо для искоренения опечаток иоблегчения понимания процессов поскольку после их изучения многое осталось для меня загадкой. К сожалению эти "понятные" и "простые" алгоритмы ведут качующий образ жизни.

В основе построения фракталов лежит некая нелинейная функция комплексного процесса с обратной связью z= > z 2 +c поскольку z и с -к омплексные числа, то z=x+iy , c=p+iq необходимо разложить его на х и у чтобы перейти в более реальную для простого человека плоскость:


x(k+1)=x(k) 2 -y(k) 2 + p,
y(k+1)=2*x(k)*y(k) + q.

Плоскость, состоящая из всех пар (x,y ), может рассматриваться, как при фиксированных значениях р и q , так и при динамических. В первом случае перебирая по закону все точки (х) плоскости и окрашивая их в зависимости от количества повторений функции необходимых для выхода из итерационного процесса или не окрашивая (черный цвет) при привышении допустимого максимума повторений мы получим отображение множества Жюлиа. Если, напротив, определить начальнуюя пару значений (x,y ) и проследить ее колористическую судьбу при динамически изменяющихся значениях параметров p и q , то получаим изображения, называемые множествами Мандельброта.

К вопросу об алгоритмах раскраски фракталов.

Обычно тело множества представляют в виде черного поля, хотя очевидно, что черный цвет может быть заменен на любой другой, но это тоже мало интересный результат. Получить изображение множества раскрашенного во все цвета - задача которая не может решаться при помощи циклических операций т.к. количество итерации формирующих тело множества равно максимально возможному и всегда одно и тоже. Раскрасить множество в разные цвета возможно применив в качестве номера цвета результат проверки условия выхода из цикла (z_magnitude ) или подобный ему, но с другими математическими действиями.

Применение "фрактального микроскопа"

для демонстрации пограничных явлений.

Аттракторы - центры ведущие борьбу за доминирование на плоскости. Между аттракторами возникает граница представляющая витееватый узор. Увеличивая масштаб рассмотрения в пределах границ множества можно получать нетривиальные узоры отражаюшие состояние детерминированного хаоса - обычного явления в мире природы.

Исследуемые географами объекты образуют систему с весьма сложно организованными границами, в связи с чем их проведение становится не простой практической задачей. Природные комплексы имеют ядра типичности выступающие в качестве аттракторов теряющих силу влияния на территорию по мере ее удаления.

Используя фрактальный микроскоп для множеств Мандельброта и Жюлиа можно сформировать представление о пограничных процессах и явлениях, одинаково сложных не зависимо от масштаба рассмотрения и таким образом подготовить восприятие специалиста к встрече с динамичным и на первый взгляд хаотичным в пространстве и времени природным объектом, к пониманию фрактальной геометрии природы. Многоцветие красок и фрактальная музыка определенно оставят глубокий след в сознании учащихся.

Фракталам посвящены тысячи публикаций и огромные ресурсы интернет , однако для многих специалистов далеких от информатики данный термин представляется абсолютно новым. Фракталы, как объекты представляющие интерес для специалистов различных отраслей знания, должны получить надлежащее место в курсе информатики.

Примеры

РЕШЕТКА СЕРПИНСКОГО

Это один из фракталов, с которыми экспериментировал Мандельброт, когда разрабатывал концепции фрактальных размерностей и итераций. Треугольники, сформированные соединением средних точек большего треугольника вырезаны из главного треугольника, образовывая треугольник, с большим количеством дырочек. В этом случае инициатор - большой треугольник а шаблон - операция вырезания треугольников, подобных большему. Так же можно получить и трехмерную версию треугольника, используя обыкновенный тетраэдр и вырезая маленькие тетраэдры. Размерность такого фрактала ln3/ln2 = 1.584962501.

Чтобы получить ковер Серпинского , возьмем квадрат, разделим его на девять квадратов, а средний вырежем. То же сделаем и с остальными, меньшими квадратами. В конце концов образуется плоская фрактальная сетка, не имеющая площади, но с бесконечными связями. В своей пространственной форме, губка Серпинского преобразуется в систему сквозных форм, в которой каждый сквозной элемент постоянно заменяется себе подобным. Эта структура очень похожа на разрез костной ткани. Когда-нибудь такие повторяющиеся структуры станут элементом строительных конструкций. Их статика и динамика, считает Мандельброт, заслуживает пристального изучения.

ФРАКТАЛ СЕРПИНСКОГО

Не перепутайте этот фрактал с решеткой Серпинского . Это два абсолютно разных объекта. В этом фрактале, инициатор и генератор одинаковы . При каждой итерации, добавляется уменьшенная копия инициатора к каждому углу генератора и так далее. Если при создании этого фрактала произвести бесконечное число итераций, он бы занял всю плоскость, не оставив ни одной дырочки. Поэтому его фрактальная размерность ln9/ln3 = 2.0.

КРИВАЯ КОХА

Кривая Коха один из самых типичных детерминированных фракталов. Она была изобретена в девятнадцатом веке немецким математиком по имени Хельге фон Кох, который, изучая работы Георга Контора и Карла Вейерштрассе, натолкнулся на описания некоторых странных кривых с необычным поведением. Инициатор - прямая линия. Генератор - равносторонний треугольник, стороны которого равны трети длины большего отрезка. Эти треугольники добавляются к середине каждого сегмента снова и снова. В своем исследовании, Мандельброт много экспериментировал с кривыми Коха, и получил фигуры такие как Острова Коха, Кресты Коха, Снежинки Коха и даже трехмерные представления кривой Коха, используя тетраэдр и прибавляя меньшие по размерам тетраэдры к каждой его грани. Кривая Коха имеет размерность ln4/ln3 = 1.261859507.

ФРАКТАЛ МАНДЕЛЬБРОТА

Это НЕ множество Мандельброта, которое можно достаточно часто видеть. Множество Мандельброта основано на нелинейных уравнениях и является комплексным фракталом. Это тоже вариант кривой Коха несмотря на то, что этот объект не похож на нее. Инициатор и генератор так же отличны от использованных для создания фракталов, основанных на принципе кривой Коха, но идея остается той же. Вместо того, чтобы присоединять равносторонние треугольники к отрезку кривой, квадраты присоединяются к квадрату. Благодаря тому, что этот фрактал занимает точно половину отведенного пространства при каждой итерации, он имеет простую фрактальную размерность 3/2 = 1.5.

ФРАКТАЛЫ ЗВЕЗДА И СНЕЖИНКА

Оба эти объекта не являются классическими фракталами и они не были изобретены Мандельбротом или кем-либо из известных математиков. Я просто создал эти фракталы из интереса и чтобы поэкспериментировать в программировании. И инициатор и генератор здесь фигура, сформированная соединением средних точек сторон со средними точками противолежащих сторон в правильном шестиугольнике. Более того, я могу только подозревать о размерности этих фракталов.

ПЯТИУГОЛЬНИК ДАРЕРА

Фрактал выглядит как связка пятиугольников, сжатых вместе. Фактически он образован при использовании пятиугольника в качестве инициатора и равнобедренных треугольников, отношение большей стороны к меньшей в которых в точности равно так называемой золотой пропорции (1.618033989 или 1/(2cos72)) в качестве генератора. Эти треугольники вырезаются из середины каждого пятиугольника, в результате чего получается фигура, похожая на 5 маленьких пятиугольников, приклеенных к одному большому.

Вариант этого фрактала можно получить при использовании в качестве инициатора шестиугольника. Этот фрактал называется Звезда Давида и он довольно похож на шестиугольную версию Снежинки Коха. Фрактальная размерность пятиугольника Дарера ln6/ln (1+g), где g - отношение длины большей стороны треугольника к длине меньшей. В данном случае, g - это Золотая Пропорция, так что фрактальная размерность приблизительно равна 1.86171596. Фрактальное измерение Звезды Давида ln6/ln3 или 1.630929754.

КРИВАЯ ГИЛЬБЕРТА

Этот фрактал очень похож на Фрактал Лабиринт, кроме того факта что ширина буквы U, являющейся генератором не изменяется с каждой итерацией. Однако, в отличии от Фрактала Лабиринта, кривая Гильберта также называемая Отелем Гильберта, имеет одно единственное фрактальное измерение, которое точно равно 2.0, так как при бесконечном количестве итераций, он займет всю плоскость. фрактала а затем проделаете то же самое с маленькой областью этой области, то эти два увеличения будут значительно отличаться друг от друга. Два изображения будут очень похожи в деталях, но они не будут полностью идентичными.

Рис 1. Приближение множества Мандельброта

Сравните, например приведенные здесь картинки множества Мандельброта, одна из которых получена при увеличении некоторой области другой. Как видно, они абсолютно не являются идентичными, хотя на обоих мы видим черный круг, от которого в разные стороны идут пылающие щупальца. Эти элементы повторяются бесконечно долго во множестве Мандельброта в уменьшающейся пропорции.

Детерминистские фракталы являются линейными, тогда как сложные фракталы таковыми не являются. Будучи нелинейными, эти фракталы генерируются тем, что Мандельброт назвал нелинейными алгебраическими уравнениями. Хороший пример - это процесс Zn+1=ZnІ + C, что является уравнением, используемым для построения множества Мандельброта и Жулии второй степени. Решение этих математических уравнений вовлекает комплексные и мнимые числа. Когда уравнение интерпретируется графически на комплексной плоскости, результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются хотя и не без деформаций, эффекты самоподобия на различных масштабных уровнях. При этом вся картина в целом является непредсказуемой и очень хаотичной.

Как можно увидеть, смотря на картинки, сложные фракталы действительно очень сложны и их невозможно создать без помощи компьютера. Для получения красочных результатов этот компьютер должен обладать мощным математическим сопроцессором и монитором с высоким разрешением. В отличии от детерминистских фракталов, сложные фракталы не вычисляются за 5-10 итераций. Практически каждая точка на экране компьютера как отдельный фрактал. Во время математической обработки, каждая точка рассматривается как отдельный рисунок. Каждой точке соответствует определенное значение. Уравнение встраивается, применительно к каждой точке и производится, к примеру 1000 итераций. Для получения сравнительно неискаженного изображения за приемлемый для домашних компьютеров промежуток времени, для одной точки возможно проводить 250 итерации.

Большинство фракталов, которые мы видим сегодня, красиво раскрашены. Возможно фрактальные изображения получили такое большое эстетическое значение именно благодаря своим цветовым схемам. После того, как уравнение посчитано, компьютер анализирует результаты. Если результаты остаются стабильными, или колеблются вокруг определенного значения, точка обычно принимает черный цвет. Если значение на том или ином шаге стремится к бесконечности, точку закрашивают в другой цвет, может быть в синий или красный. Во время этого процесса, компьютер назначает цвета для всех скоростей движения.

Обычно, быстро движущиеся точки закрашивают в красный цвет, тогда как более медленные в желтый и так далее. Темные точки, вероятно, самые стабильные.

Сложные фракталы отличаются от детерминистских в том смысле, что они бесконечно сложные, но, при этом, могут быть сгенерированы очень простой формулой. Детерминистским фракталам не нужны формулы или уравнения. Просто возьмите чертежную бумагу и вы можете построить решето Серпинского до 3 или 4 итерации без каких-либо затруднений. Попробуйте сделать это с множеством Жулиа ! Легче пойти мерить длину береговой линии Англии!

МНОЖЕСТВО МАНДЕЛЬБРОТА

Рис 2. Множество Мандельброта

Множества Мандельброта и Жулиа , вероятно, два наиболее распространенных среди сложных фракталов. Их можно найти во многих научных журналах, обложках книг, открытках, и в компьютерных хранителях экрана. Множество Мандельброта, которое было построено Бенуа Мандельбротом, наверное первая ассоциация, возникающая у людей, когда они слышат слово фрактал. Этот фрактал, напоминающий чесальную машину с прикрепленными к ней пылающими древовидными и круглыми областями, генерируется простой формулой Zn+1=Zna+C, где Z и C - комплексные числа и а - положительное число.

Множество Мандельброта, которое чаще всего можно увидеть - это множество Мандельброта 2й степени, то есть а=2. Тот факт, что множество Мандельброта не только Zn+1=ZnІ+C, а фрактал, показатель в формуле которого может быть любым положительным числом ввел в заблуждение многих. На этой странице вы видите пример множества Мандельброта для различных значений показателя а.
Рис 3. Появление пузырьков при a=3.5

Также популярен процесс Z=Z*tg (Z+C). Благодаря включению функции тангенса, получается множество Мандельброта, окруженное областью, напоминающей яблоко. При использовании функции косинуса, получаются эффекты воздушных пузырьков. Короче говоря, существует бесконечное количество способов настройки множества Мандельброта для получения различных красивых картинок.

МНОЖЕСТВО ЖУЛИА

Удивительно, но множества Жулиа образуются по той же самой формуле, что и множество Мандельброта. Множество Жулиа было изобретено французским математиком Гастоном Жулиа , по имени которого и было названо множество. Первый вопрос, возникающий после визуального знакомства с множествами Мандельброта и Жулиа это "если оба фрактала сгенерированы по одной формуле, почему они такие разные?" Сначала посмотрите на картинки множества Жулиа . Достаточно странно, но существуют разные типы множеств Жулиа . При рисовании фрактала с использованием различных начальных точек (чтобы начать процесс итераций), генерируются различные изображения. Это применимо только ко множеству Жулиа .

Рис 4. Множество Жулиа

Хотя это нельзя увидеть на картинке, фрактал Мандельброта - это, на самом деле, множество фракталов Жулиа , соединенных вместе. Каждая точка (или координата) множества Мандельброта соответствует фракталу Жулиа . Множества Жулиа можно сгенерировать используя эти точки в качестве начальных значений в уравнении Z=ZІ+C. Но это не значит, что если выбрать точку на фрактале Мандельброта и увеличить ее, можно получить фрактал Жулиа . Эти две точки идентичны, но только в математическом смысле. Если взять эту точку и просчитать ее по данной формуле, можно получить фрактал Жулиа , соответствующий определенной точке фрактала Мандельброта.